
920 CORAL IN OUTLINE

CORAL 66 was developed from CORAL 64 by Currie and Griffiths of the

Mathematics Division of R.R.E. (Malvern). The line of development has

been towards ALGOL 60 whilst still retaining the useful on-line facilities

of CORAL 64. In particular, fixed point working and table manipulation

has been retained and the block structure of ALGOL has been incorporated.

The present provisional specification is issued by courtesy of the Royal

Radar Establishment.

The specification of a programming language down to the finest details of

interpretation is not a minor undertaking, but the syntax rules and

accompanying comments given here are sufficient to define the language

fairly exactly. The reader is assumed to be familiar with ALGOL, and

the usual liberties can be taken with the actual choice of basic symbols

(the hardware representation), The character set used here is one which

happens to be convenient for description purposes.

A program is understood to be one element in a whole system of titled

programs sharing a ''compool" and having priorities assigned to them for

control purposes when more than one program is simultaneously active.

Compool declarations are no more restricted than those withina program and

apply to all programs within the system, but all these aspects are here regarded

as external to the language itself, being part of the general operating system.

In order to economize on storage space, non-dynamic storage allocation is

assumed. Unless a computer is well equipped with address modification

facilities, dynamic allocation also consumes valuable running time.

In the following syntax rules, class-names are written as single words in

block capitals reserved for this purpose alone, and therefore do not need

special brackets. The equals sign after a left-hand class name is, of course,

outside the language, and hence distinct from the basic symbol = which occurs

under STRINGITEM (67) and RELATIONALOPERATOR (60). Alternative

expansions for a class name are written on separate lines. The symbol i)

denotes a void.

(1) BLOCK = begin DECLARATIONLIST STATEMENTLIST end

The body of a program is a block. The end of a block limits the scope of

identifiers declared at its head, as in ALGOL. At each entry to a block,

simple variables and table iterns can be initialized dynamically. Though

storage allocation is not dynamic, advantage is taken of limited scopes in

the implementation, as the working space of successive blocks can be

automatically overlaid. :

(2) DECLARATIONLIST = DECLARATION ;

. DECLARATION ; DECLARATIONLIST

No identifier may be used before it has been completely declared. The scope

of an identifier thus extends from the conclusion of its declaration to the end

of its block. The rules of scope are otherwise the same as in ALGOL.

(3) STATEMENTLIST = STATEMENT

STATEMENT ; STATEMENTLIST

(4) DECLARATION = NUMBERDEGLARATION

PROCEDUREDECLARATION

ARRAYDECLARATION

TABLEDECLARATION

SWITCHDECLARATION

DEFINEDECLARATION

(5) NUMBERDECLARATION = NUMBERTYPE IDENTLIST NUMBERPRESET

(6) NUMBERT YPE = fixed FIXEDSCALE
integer for significance of integer, see (7)

(7) FIXEDSCALE = (INTEGER, SIGNEDINTEGER)

The first integer is the total number of binary digits representing the fixed

point number, including a sign digit, and must not exceed the wordlength of

the computer (18 bits), The second integer is the number of binary digits
after the point i.e. between the binary point and the end of the stored

representation. This may exceed the first integer or be negative. Neither

integer nor fixed point numbers are closed-packed, The scale of an integer

is effectively (18, 0).

(8) IDENTLIST = IDENTIFIER
IDENTLIST, IDENTIFIER

(9) IDENTIFIER = LETTER

IDENTIFIER LETTER

IDENTIFIER DIGIT

(10) NUMBERPRESET =

~— NUMBER

An example of a NUMBERDECLARATION would be

fixed (18,17) x, y, z=—0

Here x, y and z would lie in the range (-1, +1) excluding +1 and would all

take initial value zero dynamically at every entry to the block. Variables

needing different pre-setting are thus declared separately.

(11) NUMBER = UNSIGNEDNUMBER
ADDOPERATOR UNSIGNEDNUMBER

(12) UNSIGNEDNUMBER = DECIMALNUMBER

1 PlGNEDINTEGER

DECIMALNUMBER 10 SIGNEDINT EGER

(13) DECIMALNUMBER = INTEGER

. INTEGER

INTEGER . INTEGER

(14) INTEGER = DIGIT
INTEGER DIGIT

(15) SIGNEDINTEGER = INTEGER

ADDOPERATOR INTEGER

16 ARRAYDECLARATION = NUMBERTYPE array ARRAYLIST axytey

For example, see (19) below.

(17) ARRAYLIST = ARRAYITEM

ARRAYITEM, ARRAYLIST

(18) ARRAYITEM = IDENTLIST [SIZELIST]

(19) SIZELIST = SIGNEDINTEGER : SIGNEDINTEGER

SIZELIST, SIGNEDINTEGER : SIGNEDINTEGER

This, of course, is where the lack of dynamic storage allocation shows in the

language: array bounds must be numerical values. All array items in one

array declaration have the same scaling, and each item occupies one whole
computer word, Example of ARRAYDECLARATION,

fixed (6,0) array a, bf: 3], cf :3,1:4,1: 4]

Here a and b are simple three-component vectors, and c is a three-

dimensional array of 48 elements, All 54 elements are integers with 5

bits plus sign.

(20) TABLEDECLARATION = table IDENTIFIER [INTEGER,INTEGER]
LENTRYPART]

The table declaration does not exist in ALGOL 60, though it has been proposed

for a future ALGOL. The identifier is the name of the table, the first integer

is the number of entries in the table, the second integer the number of

computer words per entry. For further explanation and example, see (26)

below.

(21) ENTRYPART = ENTRYSEGMENT
ENTRYPART ; ENTRYSEGMENT

(22) ENTRYSEGMENT = SEGMENT DESCRIPTION SEGMENTPRESET

(23) SEGMENT DESCRIPTION = IDENTIFIER DESCRIPTION INTEGER, INTEGER

(24) SEGMENTPRESET = $
—— CONST LIST

(25) CONST LIST = NUMBER

CONST LIST, NUMBER

(26) DESCRIPTION = (INTEGER)
(INTEGER unsigned SIGNEDINTEGER)
(INTEGER signed SIGNEDINTEGER)

A table is analogous to a one-dimensional array. For example, a table

called "squad'! might have eight entries, one per man, Each entry can

occupy more than one computer word, but each is of the same length, a

whole number of words. An entry is made up of packed data segments, and

the segments are named. A segment is referenced by its name and a sub-
script denoting the entry, For example, each entry in squad might havea

segment called "height", and height C7] would refer to the height of the

seventh man. Notice that this reference to a component of the table "squad!"

does not involve the identifier squad. An example of a table declaration is:

table squad [s, 2|

[armynumber (18 signed 0) 1, 1;
age (7 unsigned 1) 2, 1;
height (9 unsigned 2) 2, 8;
status (2) 2, 10, 6, 0, 0, 0, 0, 0, 0;
trait (16) 2,°1]

Explanation: 8 entries in squad

2 words per entry

18 bit segment for army numbers starting at word 1, bit 1, of
entry. Contents of segment to be treated as an integer

(i.e. 0 bits after the point), with 17 bits plus sign bit.
Note: an ungigned segment of 18 bits could not be handled

arithmeticalily in the 920 computer, since it has an 18 bit

word length.

7 bit segment for age, starting at word 2, bit 1, of entry.

Contents of segment to be treated as a positive number

in the range 0.0 to 63.5 inclusive.

9 bit segment for height, similarly treated.

2 bit segment for status, a bit pattern starting at word 2,

bit 17. For explanation of presetting see below.

16 bit segment for trait, to be treated simply as a bit
pattern, Note: segments can be defined in an overlapping

manner; inthis instance trait"! is the

union of age and height.

It would be undesirable to permit segments to overlap joins between computer

words, and in CORAL 66 this is barred. Ifa segment of data having
DESCRIPTION of type (INTEGER) is used arithmetically, it will be treated as

an unsigned integer, i.e.

(n) = (n unsigned 0).

Any segment can be initialized (i.e. preset) dynamically, as shown for status
in the example, which would be set to zero for all eight entries. The

presetting values would be converted to the appropriate binary form, in this

case an unsigned integer.

(27) SWITCHDEC LARATION = switch IDENTIFIER#—IDENT LIST

This is more restricted than ALGOL, which permits designational expressions

in the switch list. Here the list is of labels only.

(28) PROCEDUREDECLARATION =

ANSWERSPECIPICATION procedure PROGEDUREHEADING ;

PROCEDUREBODY

Examples of procedure declarations are given after rules (43) and (73),

(29) ANSWERSPECIFICATION =
NUMBERTYPE

This is the type of value, ifany, assigned to the procedure in its body.

See (43).

(30) PROCEDUREHEADING = IDENTIFIER PARAMETERPART

The identifier is the name of the procedure.

(31) PARAMETERPART = $
(PARAMETERLIST)

(32) PARAMETERLIST = PARAMETERSET
PARAMETERLIST ; PARAMETERSET

(33) PARAMETERSET = SPECIFIER IDENT LIST

_ANSWERSPECIFICATION procedure PROCLIST

TABLESPECIFICATION

Unlike the formal parameter list in ALGOL, the specification of parameters

is included with the formal parameters where these first appear, and not in

a separate list afterwards. For the detailed expansion of syntax of

PROCLIST, see (70).

(34) SPECIFIER = CALLTYPE NUMBERTYPE

NUMBERTYPE array

label

switch

(35) CALLTYPE = value

location

These declarations describe the type of parameter call for fixed and integer

type numbers. The CALLTYPE value is the standard ALGOL "call by value",

The CALLTYPE location is what is sometimes known as "address by value",

i.e. itis suitable for output from the procedure, but occurrences of the

formal parameter in the procedure body do not repeatedly refer back to the

actual parameter for re-evaluation. Arrays and tables are called in this way
without option,

(36) TABLESPEGIFICATION
= table IDENTIFIER [INTEGER, INTEGER] [SEGMENT LIST]

For explanation, compare (20) and see below.

(37) SEGMENT LIST = SEGMENT DESCRIPTION

SEGMENT LIST ; SEGMENT DESCRIPTION

Note the similarity between SEGMENT LIST and ENTRYPART (21), the only

difference being the absence of SEGMENTPRESET.

(38) PROCEDUREBODY = COMPOUNDSTATEMENT

BLOCK

ANSWERSTATEMENT

Note the differences from ALGOL and see (43) for assignment of a value
to the procedure, The procedure body is like a block rather than a compound

statement, e.g. it is not permitted to jump into it from outside. Rule (39)

is void.

(40) . COMPOUNDSTATEMENT = begin STATEMENT LIST end

(41) STATEMENT = FREESTATEMENT
FORSTATEMENT
IFSTATEMENT
IDENTIFIER ; STATEMENT

(42) FREESTATEMENT = ANSWERSTATEMENT

ASSIGNMENTSTATEMENT

GOTOSTATEMENT

PROGEDURECALL

CODESTATEMENT

COMPOUNDSTATEMENT

BLOCK

t
(43) ANSWERSTATEMENT = answer EXPRESSION

When a procedure declaration starts with an answer specification which is not
void, the procedure body (38) is either an answer~statement alone or has an
answer -statement immediately before its end. The expression will be

evaluated to the specified type and assigned as the value of the procedure.

This arrangement seems more satisfactory than the exceptional assignment
statement in ALGOL. The following is an example of a procedure

declaration with assorted parameters:

fixed (12, 5) procedure
example (value fixed (12, 5) a, b, ¢;

location fixed (6, 5) x;
location integer i, j;

fixed (12, 5).array g, h;
integer array k; t

1 label sl, s2, s3; .

table t(16, 1) [head(9) 1,10; tail (9) 1, I]);

begin integer p, q;

STATEMENT LIST;

answeratbtc

end

(44) FORSTATEMENT = for IDENTIFIER*-FORLIST, do STATEMENT

The identifier is a simple arithmetic variable. It is not permitted to jump

to or into the controlled statement from outside. The value of the controlled

variable upon exit by exhaustion is undefined. Upon exit by jumping out, its

value is what it was at the time. The further sub-division of the syntax

follows much the same pattern as in ALGOL except that the expressions in

the for-list are called by value as soon as each element of the for-list is

reached,

(45) FORLIST = FORELEMENT
FORELEMENT, FORLIST

(46) FORELEMENT = EXPRESSION

EXPRESSION step EXPRESSION until EXPRESSION

EXPRESSION while BOOLEANEXPRESSION

The expression or expressions in a for-element (except the boolean) are
all evaluated immediately before the for-statement is obeyed for that
for-element. No further reference to the original expressions is made

after this.

(47) EXPRESSION = TERM
EXPRESSION ADDOPERATOR TERM
ADDOPERATOR TERM

(48) ADDOPERATOR = +

(49) TERM = FACTOR
TERM MULTOPERATOR FACTOR

(50) MULTOPERATOR = x
i

(51) FACTOR = PRIMARY

FACTOR } PRIMARY

(52) PRIMARY = (EXPRESSION)
VARIABLE
UNSIGNEDNUMBER
PROCEDURECALL

The procedure call must refer to a procedure with an answer part.

(53) VARIABLE = IDENTIFIER
IDENTIFIER [EXPRESSIONLIST]

The expression list is the list of subscripts. Arithmetic variables are those

which occur in (52) and (62), and they refer to numbers, array elements
or segments of a table entry. The variable occurring in (63) is a "designational

variable" which is a label or a switch.

(54) EXPRESSIONLIST = EXPRESSION

EXPRESSIONLIST, EXPRESSION

(55) PROCEDURECALL = IDENTIFIER

IDENTIFIER (EXPRESSIONLIST)

When a formal parameter is substituted by value, the FIXEDSCALE of the

actual parameter, where this is a variable, need not agree with that

specified for the formal parameter. An assignment takes place, which

looks after conversion of scaling. Where the formal parameter is sub-

stituted by location, the scaling must agree,

(56) IFSTATEMENT

=if BOOLEANEXPRESSION then LABFREESTATEMENT

if BOOLEANEXPRESSION then LABFREESTATEMENT else STATEMENT

(57) BOOLEANEXPRESSION = BOOLEANEXPRESSION or BOOLEANONE

BOOLEANONE

(58) BOOLEANONE = BOOLEANONE and BOOLEANTWO

BOOLEANTWO

(59) BOOLEANTWO = EXPRESSION RELATIONALOPERATOR EXPRESSION

A "booleantwo" cannot be bracketed, All brackets within boolean expressions

are those around or within the arithmetic expressions on each side of the

relational operator.

(60) RELATIONALOPERATOR = <
>
<
2

(61) LABFREESTATEMENT = FREESTATEMENT

IDENTIFIER : LABFREESTATEMENT

c-8

The identifier is a label.

(62) ASSIGNMENTSTATEMENT = VARIABLE“ EXPRESSION

VARIABLE“ ASSIGNMENTSTATEMENT

The expression is evaluated in an undefined sequence with undefined inter-

mediate scaling and is converted to the scaling of the variable on the left-

hand side before assignment. Where there are two or more left-hand sides,

their NUMBERTYPE must agree.

(63) GOTOSTATEMENT = goto VARIABLE

The variable, syntactically similar to a simple or subscripted arithmetic
variable, is here a label or a switch.

(64) CODESTATEMENT = code begin CODESTREAM end

The stream of machine code is ina form similar to SIR. The identifiers

within the CODESTREAM refer exactly to the corresponding language items.

(65) DEFINEDECLARATION = define IDENTIFIER as {STRING}

Within the scope of the declaration, the identifier is supposed to be replaced

by the string whenever it occurs.

(66) STRING = STRINGITEM
STRING STRINGITEM

(67) STRINGITEM =. LETTER

DIGIT

Hert cags 282 H Ps OL]
{STRING

The symbols are shown on one line to save space. The underscore is

assumed to be "non-escaping",

(68) LETTER =abcdefghijkimnopqrstuvwxyz

(69) DIGIT=0123456789

(70) PROCLIST = PROCITEM
PROCLIST, PROCITEM

This rule continues from (33) the syntactic description of formal procedure
parameters which are themselves procedures.. For an example, see

below (73).

(71) PROCITEM = IDENTIFIER (PROCSPECLIST)

An illustration of a procitem is indicated in the example below (73).

(72) PROCSPECLIST = PROCSPECITEM

PROCSPECLIST, PROCSPECITEM

C-9

(73) PROCSPECITEM = SPECIFIER

table

ANSWERSPECIFICATION procedure

Unlike ALGOL, a formal parameter of a procedure which is itself the name

of a procedure must be accompanied by a specification of its own parameters,

but as these occur only as actuals in the procedure body, they do not have to

be named in the PROCSPECLIST. The following is an example of a

PROCEDUREDECLARATION containing parameters of procedure type.

To show the difference between the specification of parameters ina procedure

declaration with those ina procedure parameter, outragel and outrage2 have

been assumed to have parameters of identical types. The procedure heading

is clumsy, though not outrageously so. Procedure type parameters are not a

common occurrence in ordinary programs, and when they do occur, their

own parameters would probably be simpler than are shown in this example.

fixed (12, 0) procedure

outragel (location integer i, j;

value fixed (12, 0) x;

fixed (12, 0) procedure

outrage2 (location integer,
location integer,

value fixed (12, 0),

fixed (12, 0) procedure, PROCITEM;

procedure,

procedure);

procedure p (value fixed (12, 6)), q (value fixed (12, 6)));

PROCEDUREBODY

Implementation

920 CORAL is being implemented using a new technique of compiler

generation. This technique allows modifications to the language to be

implemented very quickly and cheaply. Some suggested modifications

are listed below.

The compiler requires 16K words of store although the object code it

produces will run on any size 920.

The following facilities are included although they are not mentioned in

the syntax.

Octal constants, e.g. octal ()

String macro facility with parameters

A limited form of recursion

String handling and own variables may be added later if the need arises.

Summary

More than ALGOL Tables
Fixed point scaling

String macro facility

Presetting

Less than ALGOL No dynamic arrays

No conditional expressions

No Boolean variables

No Boolean brackets

Fewer Boolean operators

No recursion yet

Different from ALGOL For-elements called by value

Controlled for-variable never subscripted

Parameter specification different

Calls of parameters by value or location

Cc-11

Addoperator

Answerspecification

Answerstatement

Arraydeclaration

Arrayitem

Arraylist

Assignmentstatement

Block

Booleanexpression

Booleanone

Booleantwo

Galltype

Codestatement

Compoundstatement

Constlist

Decimalinumber

Declaration

Declarationlist

Definedeclaration

Description

Digit

Entrypart

Entrysegment

Expression

Expressionlist

Factor

Fixedscale

Forelement

Forlist

Forstatement

Freestatement

Gotostatement

Identifier

Identlist

Ifstatement

Integer

INDEX OF SYNTAX RULES

48-

2g

43

16

18

17

62

I

‘57

58

59

35

64

40

25

13

4

2

65

26

69

2i

22

47

54

51

7

46

45

44

42

63

9

8

56

14

Labfreestatement

Letter

Multoperator

Number

Numberdeclaration

Numberpreset,

Numbertype

Parameterlist

Parameterpart

Parameterset

Primary

Procedurebody

Procedurecall

Proceduredeclaration

Procedur eheading

Procitem

Proclist

Procspecitem

Procspeclist

Relationaloperator

Segmentdescription

Segmentlist

Segmentpreset

Signedinteger

Sizelist

Specifier

Statement

Statementlist

String

Stringitem

Switchdeclaration

Tabledeclaration

Tablespecification

Term

Unsignednumber

Variable

C-12

61

68

50

11

10

32

31

33

52

38

55

28

30

71

70

73

72

60

23

37

24

15

19

34

41

66
67
27

20

36
49
lez

53

ig

